Advanced Math 1-4
 (Day 2)
 Analyzing graphs of Functions

Graph the function.
58) $f(x)= \begin{cases}\sqrt{4+x}, & x<0 \\ \sqrt{4-x}, & x \geq 0\end{cases}$
$\sqrt{4+x} \quad \sqrt{4-x}$

x	y
0	2
-1	$\sqrt{3}$
-3	1
-4	0
$\Rightarrow s$	

x	y
0	2
1	$\sqrt{3}$
3	1
4	0
5	8

Greatest Integer Function calculator $y_{1}=\operatorname{int}(x)$

$$
f(x)=\llbracket x \rrbracket
$$

domain:
\mathbb{R}

range:

$\begin{array}{ll}-1 & \text { The greatest integer function is officially: } \\ 1.2 & \text { The greatest integer not greater than the input. } \\ 1.6 & 1\end{array}$
67) The cost of a telephone call between two cities is $\$ 0.65$ for the first minute and $\$ 0.40$ for each additional minute.
a) It is required that a model be created for the $\operatorname{cost} C$ of a telephone call between the two cities lasting t minutes. Which of the following is the appropriate model? Explain.

$$
\left.\begin{array}{rl}
C_{1}(t) & =0.65+0.0 \otimes \llbracket t-1 \rrbracket \\
C_{2}(t) & =0.65 \sim 0.04 \llbracket-(t-1) \rrbracket
\end{array} \llbracket t \rrbracket\right]
$$

The difference between $\llbracket t \rrbracket$ and $\llbracket-(t-1) \rrbracket$ is it switches the open circle from the right sides to the left sides.

b) Graph the appropriate model. Determine the cost of a call lasting 18 minutes and 45 seconds.

$$
\begin{aligned}
& 0.65-.40\left[\left[-\left(8 \mathrm{~min} 45_{\mathrm{sec}}-1\right)\right]\right] \\
& \left.0.65-.40\left[-17 \frac{3}{4} \mathrm{~min}\right]\right] \xrightarrow{\rightarrow 0.65-.40(-18)} \begin{array}{l}
\\
=0.65+7.20
\end{array}
\end{aligned}
$$

73) Write the height h of the rectangle as a function of x.

Assignment:
pg 156
57, 59, 61,62,
69-70 all,
72-80 even.

